De Moivre's Theorem and its Applications in Trigonometry
De Moivre's Theorem is a powerful tool in mathematics, particularly in the field of complex numbers. It states that for any real number x and any integer n, we have the following identity:
cos nx i sin nx (cos x i sin x)n
Expanding the Cosine and Sine Terms
Let's consider the expansion of De Moivre's Theorem for the specific case where n 3. We start by substituting n 3 into the theorem:
cos 3x i sin 3x (cos x i sin x)3
Expanding the right-hand side using the binomial theorem, we get:
(cos x i sin x)3 cos3x 3i cos2x sin x - 3 cos x sin2x - i sin3x
Separating the real and imaginary parts, we obtain:
cos 3x i sin 3x (cos3x - 3 cos x sin2x) i (3 cos2x sin x - sin3x)
By comparing the real and imaginary parts on both sides, we get the following trigonometric identities:
cos 3x 4 cos3x - 3 cos x
sin 3x 3 sin x - 4 sin3x
Deriving Trigonometric Identities
Another way to derive the identity for sin 3x without using De Moivre's Theorem directly is by using the angle addition formula for sine:
sin 3x sin (x 2x) sin x cos 2x cos x sin 2x
Using the double angle identities for sine and cosine, we have:
cos 2x cos2x - sin2x
sin 2x 2 sin x cos x
Substituting these into the equation for sin 3x, we get:
sin 3x sin x (cos2x - sin2x) cos x (2 sin x cos x)
Expanding and simplifying, we obtain:
sin 3x 3 sin x cos2x - sin3x
Further simplification using the Pythagorean identity, cos2x 1 - sin2x, yields:
sin 3x 3 sin x (1 - sin2x) - sin3x
sin 3x 3 sin x - 4 sin3x
Euler's Formula and Trigonometric Expressions
Another fascinating way to derive these identities is by using Euler's formula, which expresses the sine function in terms of the exponential function:
sin x (eix - e-ix) / (2i)
Applying this to sin 3x, we get:
sin 3x (e3ix - e-3ix) / (2i)
Using the binomial theorem, we get:
(eix - e-ix)3 e3ix - 3 eix e-ix 3 e-ix eix - e-3ix
Reducing this, we have:
sin 3x (1/2i) * (e3ix - e-3ix) - 3/2 (eix - e-ix) / (2i)
Simplifying, we obtain:
sin 3x (3/4) sin x - (1/4) sin 3x
Thus, rearranging, we get:
sin 3x 3 sin x - 4 sin3x