Derivative of the Inverse Tangent of a Sinusoidal Function with Respect to x/2
This article delves into the detailed process of finding the derivative of the inverse tangent of a specific sinusoidal function, (tan^{-1}leftfrac{sin x - cos x}{sin x cos x}right), with respect to (x/2). The solution is approached using calculus techniques, particularly the chain rule and the quotient rule, to provide a comprehensive understanding of the underlying mathematical principles.
Problem Statement
We aim to compute the derivative of (tan^{-1}leftfrac{sin x - cos x}{sin x cos x}right) with respect to (x/2). This requires a multi-step process, involving the application of the chain rule and the inverse tangent derivative formula.
Solution
Step 1: Define the Function and Apply the Chain Rule
Let (y tan^{-1}leftfrac{sin x - cos x}{sin x cos x}right). To find the derivative (frac{dy}{dx/2}), we use the chain rule:
[frac{dy}{dx/2} 2 frac{dy}{dx}]Step 2: Express dy/dx Using the Inverse Tangent Derivative Formula
The derivative of (tan^{-1}u) with respect to (u) is (frac{1}{1 u^2}). Here, (u frac{sin x - cos x}{sin x cos x}). Thus, we write:
[frac{dy}{dx} frac{1}{1 u^2} cdot frac{du}{dx}]Step 3: Compute u and Its Derivative du/dx
Define (u frac{sin x - cos x}{sin x cos x}) and use the quotient rule to find (frac{du}{dx}):
[frac{du}{dx} frac{(sin x cos x)(-cos x - sin x) - (sin x - cos x)(cos x sin x)}{(sin x cos x)^2}]This simplifies to:
[frac{du}{dx} frac{-sin x cos x^2 sin^2 x - cos x^2 sin x cos x}{(sin x cos x)^2}]Further simplification gives:
[frac{du}{dx} frac{1 - sin 2x}{sin x cos x^2}]Step 4: Compute 1 u^2
Calculate (u^2) first:
[u^2 left( frac{sin x - cos x}{sin x cos x} right)^2 frac{(sin x - cos x)^2}{(sin x cos x)^2}]Incorporate into (1 u^2):
[1 u^2 1 frac{(sin x - cos x)^2}{(sin x cos x)^2} frac{(sin x cos x)^2 (sin x - cos x)^2}{(sin x cos x)^2}]This can be further simplified to:
[1 u^2 frac{2}{sin x cos x^2}]Step 5: Combine All Terms to Find dy/dx
Substitute (frac{du}{dx}) and (1 u^2) back into the expression for (frac{dy}{dx}):
[frac{dy}{dx} frac{sin x cos x^2}{2} cdot frac{1 sin 2x}{sin x cos x^2} frac{1 sin 2x}{2}]Step 6: Correct the Expression for [frac{dy}{dx/2}]
Finally, applying the chain rule correctly, we get:
[frac{dy}{dx/2} 2 cdot frac{1 sin 2x}{2} 1 sin 2x]Conclusion
The derivative of (tan^{-1}leftfrac{sin x - cos x}{sin x cos x}right) with respect to (x/2) simplifies to (1 sin 2x).
Keywords: derivative, inverse tangent, trigonometric functions