Determining the Convergence of the Series Σn2∞ 1/ [ln^n n]
The problem at hand involves determining the convergence of a series:
$$sum_{n2}^{infty} frac{1}{(ln n)^n}$$
We will utilize the Ratio Test and the Cauchy Condensation Test to establish the convergence of this series.
Applying the Ratio Test
The Ratio Test states that for a series $$sum a_n$$, if we compute the limit:
$$L lim_{n to infty} left| frac{a_{n 1}}{a_n} right|$$
We can use this test to determine the convergence of the series:
Step-by-Step Application of the Ratio Test
Let us define:
$$a_n frac{1}{(ln n)^n}$$
We need to compute the term:
$$a_{n 1} frac{1}{(ln (n 1))^{n 1}}$$
The ratio $$frac{a_{n 1}}{a_n}$$ can be computed as:
$$frac{a_{n 1}}{a_n} frac{frac{1}{(ln (n 1))^{n 1}}}{frac{1}{(ln n)^n}} frac{(ln n)^n}{(ln (n 1))^{n 1}}$$
This simplifies to:
$$frac{a_{n 1}}{a_n} frac{(ln n)^n}{(ln (n 1))^{n 1}} frac{(ln n)^n}{(ln (n 1))^n (ln (n 1))} frac{(ln n)^n}{(ln n ln (1 frac{1}{n}))^n (ln (n 1))}$$
Approximating at large n:
$$ln (n 1) sim ln n$$
Thus, we have:
$$lim_{n to infty} frac{a_{n 1}}{a_n} lim_{n to infty} frac{(ln n)^n}{(ln n)^n (ln (n 1))} lim_{n to infty} frac{1}{ln (n 1)} 0$$
Since $$L 0 , the series $$sum_{n2}^{infty} frac{1}{(ln n)^n}$$ converges by the Ratio Test.
Applying the Cauchy Condensation Test
To further confirm convergence, we apply the Cauchy Condensation Test:
Consider the series:
$$S_n sum_{k2}^{n-1} frac{1}{(ln k)^k}$$
Applying the test, we obtain:
$$frac{2^k}{(ln 2^k)^{2^k}} frac{2^k}{k^{2^k} (ln 2)^{2^k}}$$
This can be simplified to:
$$frac{2^k}{k^{2^k} (ln 2)^{2^k}} frac{2^k}{k^{2^k}} cdot frac{1}{(ln 2)^{2^k}}$$
Next, we consider the ratio for the next term:
$$frac{2^{k-1}}{2^k} cdot frac{(k 1)^{2^{k-1}}}{k^{2^k}} cdot frac{(ln 2)^{2^k}}{(ln 2)^{2^{k-1}}} frac{1}{2} cdot frac{(k 1)^{2^{k-1}}}{k^{2^k}} cdot (ln 2)^{2^k} / (ln 2)^{2^{k-1}}$$
This further simplifies to:
$$frac{1}{2} cdot frac{(k 1)^{2^{k-1}}}{k^{2^k}} cdot (ln 2)^{2^{k-1}} frac{1}{2} cdot frac{(k 1)^{2^{k-1}}}{k^{2^k}} cdot (ln 2)^{2^{k-1}} o(1) text{ as } k to infty$$
Since this ratio approaches 0 as $$k to infty$$, the series converges by the Cauchy Condensation Test.
Conclusion
By both the Ratio Test and the Cauchy Condensation Test, we can conclude that the series $$sum_{n2}^{infty} frac{1}{(ln n)^n}$$ converges.
For further reference, proofs of these tests are available on the web.