Integrating √(4x - x^2) with Trigonometric Substitution
The integral ∫√(4x - x^2)dx can be solved using trigonometric substitution. This method is particularly useful when dealing with integrands that involve expressions of the form √(a^2 - u^2).
Problem Statement
Consider the integral (I int sqrt{4x - x^2}dx). Our goal is to evaluate this integral using a trigonometric substitution technique.
Step 1: Completing the Square
The first step is to complete the square for the expression under the square root:
(4x - x^2 4 - (x^2 4x))
4 - (x^2 4x 4 - 4) 4 - (x 2)^2)
4 - (x - 2)^2)
Therefore, the integral can be rewritten as:
(I int sqrt{4 - (x - 2)^2}dx)
Step 2: Trigonometric Substitution
Next, we use the substitution (x - 2 2sintheta), which gives us:
(dx 2costheta dtheta)
Substituting these into the integral, we get:
(I int sqrt{4 - 4sin^2theta} cdot 2costheta dtheta)
2 int 2cos^2theta dtheta)
4 int cos^2theta dtheta)
Using the identity (cos^2theta frac{1 cos 2theta}{2}), we obtain:
(I 4 int frac{1 cos 2theta}{2} dtheta)
2 int (1 cos 2theta) dtheta)
2theta sin 2theta C)
Since (theta sin^{-1}frac{x - 2}{2}), and (sin 2theta 2sinthetacostheta), we have:
(sin 2theta 2 cdot frac{x - 2}{2} cdot frac{sqrt{4x - (x - 2)^2}}{2})
Substituting back, the final result is:
(I 2sin^{-1}frac{x - 2}{2} frac{x - 2}{2} cdot sqrt{4x - x^2} C)
Conclusion
The integral ∫√(4x - x^2)dx is evaluated as:
(boxed{2sin^{-1}frac{x - 2}{2} cdot frac{x - 2}{2} sqrt{4x - x^2} C})
Related Formulas
For the general case ∫√(a^2 - u^2)du, we have the formula:
(int sqrt{a^2 - u^2}du frac{u}{2} sqrt{a^2 - u^2} frac{a^2}{2} sin^{-1} frac{u}{a} C)
For instance, for the specific case where a 2:
(int sqrt{4 - x^2}dx frac{2}{2} sqrt{4 - x^2} frac{4}{2} sin^{-1} frac{x}{2} C sqrt{4 - x^2} 2sin^{-1} frac{x}{2} C)
Proof of the General Formula
To prove the general formula, we can use integration by parts and trigonometric identities. The detailed proof can be found in the video linked here:
∫√a^2u^2 du Proof