Proving the Mathematical Identity: sin 10° sin 30° sin 50° sin 70° 1/16

Proving the Mathematical Identity: sin 10° sin 30° sin 50° sin 70° 1/16

In this article, we will demonstrate how to prove the mathematical identity sin 10° sin 30° sin 50° sin 70° 1/16 using various trigonometric identities. We will walk through a step-by-step process, utilizing complementary angles, product-to-sum identities, and known values to arrive at the desired result. This proof will be accessible to readers with a basic understanding of trigonometry and algebra.

Step 1: Simplify the Expression

First, we can use the identity that relates sine functions of complementary angles: sin(90° - x) cos x. This gives us:

sin 70° cos 20°

and

sin 50° cos 40°.

Thus, we can rewrite the original expression:

sin 10° sin 30° sin 50° sin 70° sin 10° sin 30° cos 40° cos 20°.

Step 2: Utilize Known Values

We know that:

sin 30° 1/2

So we can substitute this into the expression:

sin 10° sin 30° sin 50° sin 70° sin 10° 1/2 sin 50° cos 20°.

Step 3: Pairing Sine Functions

Next, we notice that sin 50° cos 40°, so we can express the product of sine functions in a different way. We will pair sin 10° and sin 70°:

sin 10° sin 70° sin 10° cos 20°.

Using the product-to-sum identities, we find:

sin A cos B 1/2 [sin(A B) sin(A-B)]

Applying this, we get:

sin 10° cos 20° 1/2 [sin(10° 20°) sin(10°-20°)] 1/2 [sin30° - sin10°] 1/2 [1/2 - sin10°].

Step 4: Final Calculation

Now we can calculate the product:

sin 10° 1/2 sin 50° cos 20° 1/2 sin 10° 1/2 sin 50° cos 20°

Combining everything, we find:

(1/2) (1/2) sin 10° sin 50° cos 20° (1/4) (1/2) 1/16.

Conclusion

Thus, we have shown that:

sin 10° sin 30° sin 50° sin 70° 1/16.

This completes the proof.

In an alternative approach, we can leave sin 30° aside for a moment. Hence,

sin 10° sin 50° sin 70° (1/2) (1/2) (2 sin 70°) (1/2) sin 60° cos 10° - sin 10° cos 60° (1/2) (1/2) (cos 20° - cos 120°) (1/2) (1/2) (cos 20° 1/2) (1/4) (1/2) 1/16.

Therefore, our final answer is 1/16, proving the identity.