Proving the Rational Value of 1 cos 40° cos 80° cos 160°
Understanding trigonometric identities and mathematical proofs can be both challenging and rewarding. One such interesting problem is to prove whether the sum 1 cos 40° cos 80° cos 160° is a rational value. In this article, we will go through the detailed steps to solve this problem using proven trigonometric identities and logical reasoning.
Step 1: Initial Expression
We start with the initial expression:
1 cos 40^circ cos 80^circ cos 160^circStep 2: Simplifying Using Trigonometric Identities
We use the double-angle identity for cosine, which states that:
1 cos 2theta 2cos^2 thetaApplying this identity, we can write:
1 cos 40^circ 2cos^2 20^circ 1 cos 80^circ 2cos^2 40^circ 1 cos 160^circ 2cos^2 80^circLet S denote the sum:
S 1 cos 40^circ cos 80^circ cos 160^circSubstituting the values, we get:
S 2cos^2 20^circ 2cos^2 40^circ 2cos^2 80^circWe factor out the common coefficient:
S 2 (cos^2 20^circ cos^2 40^circ cos^2 80^circ)Step 3: Further Simplification
We use the identity:
cos 2theta 1 - 2sin^2 thetato transform the terms:
Note that:
cos 40^circ 1 - 2sin^2 20^circ cos 80^circ 1 - 2sin^2 40^circ cos 160^circ -cos 20^circ - (1 - 2sin^2 10^circ)Therefore, the expression for S becomes:
S 2 left(cos^2 20^circ (1 - 2sin^2 20^circ) (1 - 2sin^2 40^circ) (1 - 2sin^2 10^circ)right)Combining like terms, we have:
S 2 left(4 - 2sin^2 20^circ - 2sin^2 40^circ - 2sin^2 10^circright)Step 4: Simplifying Further
We simplify the expression by combining constants and terms involving sines:
S 8 - 4left(sin^2 20^circ sin^2 40^circ sin^2 10^circright)Using trigonometric identities, we know that for any angle theta:
sin^2 theta frac{1 - cos 2theta}{2}Applying this identity, we get:
sin^2 20^circ frac{1 - cos 40^circ}{2} sin^2 40^circ frac{1 - cos 80^circ}{2} sin^2 10^circ frac{1 - cos 20^circ}{2}Substituting these into the expression for S:
S 8 - 4left(frac{1 - cos 40^circ}{2} frac{1 - cos 80^circ}{2} frac{1 - cos 20^circ}{2}right)Simplifying, we get:
S 8 - 4left(frac{3 - (cos 40^circ cos 80^circ cos 20^circ)}{2}right)Further simplifying:
S 8 - 2 (3 - (1 cos 40^circ cos 80^circ cos 160^circ))Step 5: Final Simplification and Proof
Recall that the initial expression for S is:
S 1 cos 40^circ cos 80^circ cos 160^circTherefore, substituting the simplified form:
8 - 2 (3 - S) SSolving for S:
8 - 6 2S SCombining like terms:
2S S - 2 S frac{2}{8} frac{1}{4}The result is:
S frac{1}{8}Therefore, the sum 1 cos 40° cos 80° cos 160° is a rational value, and it is equal to 1/8.
Conclusion
In conclusion, by using trigonometric identities and logical reasoning, we have successfully proven that 1 cos 40° cos 80° cos 160° 1/8. This problem showcases the power of trigonometric identities and their applications in proving mathematical results.