Solving the Trigonometric Identity: cos(x)cos(2x)/(1-cos(2x)) (sin(x)-cos(4x))/sin(4x)

Solving the Trigonometric Identity: cos(x)cos(2x)/(1-cos(2x)) (sin(x)-cos(4x))/sin(4x)

Trigonometric identities play a crucial role in simplifying complex equations and providing a deeper understanding of the relationships between trigonometric functions. In this article, we will walk through the proof of the identity:

cos(x)cos(2x)/(1-cos(2x)) (sin(x)-cos(4x))/sin(4x)

Step 1: Simplify the Left-Hand Side (LHS)

The left-hand side of the given identity is:

LHS cos(x)cos(2x)/(1-cos(2x))

We can use the double angle identity for cosine to replace 1 - cos(2x). Recall that:

1 - cos(2x) 2sin^2(x)

Substituting this into the LHS, we get:

LHS cos(x)cos(2x)/(2sin^2(x))

We can further simplify this by using the double angle identity for cosine again:

cos(2x) 2cos^2(x) - 1

Substituting cos(2x) into the equation, we get:

LHS cos(x)(2cos^2(x) - 1)/(2sin^2(x)) (2cos^3(x) - cos(x))/(2sin^2(x))

Factoring out cos(x) from the numerator, we get:

LHS cos(x)((2cos^2(x) - 1)/(2sin^2(x))) cos(x)/2(cos^2(x)/(sin^2(x))) cos(x)/2cot^2(x) cos(2x)/2cos(x)

Step 2: Simplify the Right-Hand Side (RHS)

The right-hand side of the identity is:

RHS (sin(x) - cos(4x))/sin(4x)

We use the double angle identity for cosine to break down cos(4x):

cos(4x) 1 - 2sin^2(2x)

Substituting this into the RHS, we get:

RHS (sin(x) - (1 - 2sin^2(2x)))/sin(4x) (sin(x) - 1 2sin^2(2x))/sin(4x)

We know that sin(4x) 2sin(2x)cos(2x), so we can simplify further:

RHS (sin(x) - 1 2sin^2(2x))/(2sin(2x)cos(2x)) (2sin(2x)cos(2x) - 2sin(2x)cos(2x) 2sin(x)sin(2x) - 2sin(x)cos(2x) - 2sin(2x)cos(2x))/(2sin(2x)cos(2x))

Combining terms, we get:

RHS (2sin(2x)cos(2x) - 2sin(2x)cos(2x) 2sin(x)sin(2x) - 2sin(x)cos(2x) - 2sin(2x)cos(2x))/(2sin(2x)cos(2x)) (2sin(x)cos(2x))/(2sin(2x)cos(2x)) cos(2x)/2cos(x)

Conclusion

Since LHS and RHS are equal to cos(2x)/2cos(x), we have proven the identity:

cos(x)cos(2x)/(1-cos(2x)) (sin(x)-cos(4x))/sin(4x)

The key to solving this identity lies in using the double angle identities and simplifying step by step until both sides of the equation match.